일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 오차제곱합
- AVG
- max
- 데이터베이스
- 학습 구현
- 합계
- COUNT
- total
- 시험데이터
- sqlite3
- 밑바닥부터 시작하는 딥러닝
- Next.js
- Depthwise Separagle Convolution
- join
- 교차엔트로피오차
- PYTHON
- MIN
- sigmoid
- PyQt5
- 렐루함수
- sum
- 평균
- 제약조건
- Pointwise Convolution
- 신경망
- next.js 튜토리얼
- Depthwise Convolution
- 수치미분
- 최댓값
- 미니배치
- Today
- Total
목록sigmoid (2)
우잉's Development
저번 게시글에서 배운 내용은 퍼셉트론입니다. 퍼셉트론의 장점은 이론상 복잡한 함수표현이 가능하고 단점은 가중치를 인간이 수동적으로 해야한다는 겁니다. 이 단점을 보완하기 위해 신경망이 나왔습니다. 3.1 퍼셉트론에서 신경망으로 3.1.1 신경망의 예 은닉층은 입력층과 출력층과 다르게 눈에 보이지 않습니다. 입력층: 0층, 은닉층: 1층, 출력층: 2층 3.1.2 퍼셉트론 복습 \(y = \begin{cases} 0 & b+w_1x_1+w_2x_2 \le \theta \\ 1 & b+w_1x_1+w_2x_2 > \theta \end{cases} \) \(x_1\), \(x_2\) : 입력신호 \(y\) : 출력신호 \(w_1\), \(w_2\) : 각 신호의가중치 \(b\) : 편향 가중치가 b고 입력이 ..
1. Logistic Classification : 분류 문제가 주어질 때 사용하고 특히 둘 중 하나를 선택하는 binary의 경우 사용 binary 한 문제의 경우 결과 값이 0 또는 1이면 충분하지만 선형 회귀 모델을 입력에 따라 예측값이 선형적으로 증가하므로 크게 나올 수 있다. 말로 설명하면 어려우므로 예를 들어보겠습니다. 예) 시간에 따른 시험 합격 or 불합격 예측 2, 3, 4시간 공부할 경우 FAIL 5, 6, 7시간 공부할 때 PASS 한다고 하자. 그럼 아래와 같은 그래프가 나온다. Y값이 0.5를 기준으로 오른쪽은 PASS, 왼쪽은 FAIL이 나올 것이다. 만약 5시간 공부하면 결과값으로 PASS가 나올 것이다. 이걸 다시 학습시키면 그래프는 어떤 변화가 있을까? 위 그림과 같이 그래..